Assignment 9

Deadline: March 28, 2018

Hand in no 1, 2, 4, 7.

Supplementary Exercise

- 1. Use the Weierstrass M-test to study the uniform convergence of the series $\sum_{n=1}^{\infty} \frac{x^n}{n}$ for $x \in (0, b)$ where b > 0.
- 2. Show that the series $\sum_{n=1}^{\infty} \frac{\sin nx}{n^p}$ defines a continuous function on \mathbb{R} for p > 1.
- 3. Show that the infinite series $\sum_{j=1}^{\infty} \frac{\cos 2^j x}{3^j}$ is a continuous function on the real line. Is it differentiable?
- 4. Show that the sequence $g_n(x) = \sum_{j=0}^n e^{-jx}$ defines a smooth function on $[1,\infty)$. What will happen if $[1,\infty)$ is replaced by $[0,\infty)$?
- 5. (a) Suppose that $\sum_{n=1}^{\infty} f_n(x)$ is pointwisely convergent on E and g is a function on E. Show that $\sum_{n=1}^{\infty} g(x) f_n(x)$ pointwisely converges to $g(x) \sum_{n=1}^{\infty} f_n(x)$, that is,

$$\sum_{n=1}^{\infty} g(x) f_n(x) = g(x) \sum_{n=1}^{\infty} f_n(x) .$$

- (b) Suppose further that $\sum_n f_n$ converges uniformly and g is bounded, show that $\sum_n gf_n$ converges uniformly.
- 6. Suppose f is a nonzero function satisfying f(x+y) = f(x)f(y) for all real numbers x and y and is differentiable at x = 0. Show that it must be of the form e^{ax} for some number a. Hint: Study the differential equation f satisfies. Show that f(0) = 1 first.
- 7. (a) Show that

$$1 + \frac{x}{1!} + \dots + \frac{x^n}{n!} \le E(x) \le 1 + \frac{x}{1!} + \dots + \frac{x^{n-1}}{(n-1)!} + \frac{e^a x^n}{n!} , \quad x \in [0,a] .$$

(b) Show that e is not a rational number. Suggestion: Deduce from (a) the inequality

$$0 < en! - \left(1 + 1 + \frac{1}{2!} + \dots + \frac{1}{n!}\right)n! < \frac{e}{n+1}$$

8. Show that the series

$$\sum_{j=0}^{\infty} \frac{x^j}{j!}$$

is not uniformly convergent on \mathbb{R} (although it is uniformly convergent in every [-M, M]).

- 9. Optional. Let a be a positive number and $n \in \mathbb{N}$.
 - (a) Show that there is a unique positive number b satisfying $b^n = a$. Write $b = a^{1/n}$.
 - (b) For any rational number $m/n, m \in \mathbb{Z}, n \in \mathbb{N}$, define $a^{m/n} = (a^m)^{1/n}$. Show that $a^{m/n} = (a^{1/n})^m$.
 - (c) Show that $a^{r_1+r_2} = a^{r_1}a^{r_2}$ for rational numbers r_1, r_2 .

This is 2050 stuff. It serves to refresh your memory.